UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Syllabus	Paper
	IGCSE – May/June	e 2007	0620	3
An incorrec	ly written symbol, e.g. NA or CL, sho	uld be penalised	d once in the paper	
1 (a) (i)	coal or coke or peat NOT wood or charcoal			[1]
(ii)	natural gas or methane or propane refinery gas	or butane or p	etroleum gases	or calor gas oi [1]
(b) (i)	petrol or gasoline paraffin or kerosene diesel aviation fuel or jet fuel fuel oil heavy fuel oil heating oil Any TWO			[2]
	NOT a named alkane e.g. octane			
(ii)	waxes or grease or lubricants or po Any TWO from the primary or secon		,	naphtha [2]
(iii)	(liquid) air or ethanol and water or a	lkenes (made	by cracking) o	or Noble Gases [1]
				[Total: 7]
	example e.g. sodium chloride T correct formula			[1] [1]
	r silicon(IV) oxide or sand or silicon o polymer only TWO elements	xide		[1]
electror good	is [1] and <u>positive ions</u> [1]			[2] [1]
				[Total: 6]
3 (i)	method C sulphuric acid (allow if given in equa zinc oxide + sulphuric acid = zinc su			[1] [1] [1]
(ii)	method A hydrochloric acid KOH + HCl = KCl + H ₂ O			[1] [1] [1]
(iii)	method B potassium iodide or any soluble iodi $Pb^{2^+} + 2I^- = PbI_2$ accept a correct Not balanced - $Pb^{2^+} + I^- = PbI_2$ O	equation even	if soluble iodide is	[1] [1] wrong [2]

	Pa	ge 3		Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2007	0620	3
4 (a	a)	(i)	BaO			[1]
		(ii)	B ₂ O	3		[1]
(b)	(i)	S ²⁻			[1]
		(ii)	Ga ³⁺			[1]
(4	c)	NCI CO	ND	8e (1bp and 3nbp) around each chlorine 8e (3bp and 1nbp) around nitrogen		[1] [1] [1]
(4	d)	(i)	vana vana vana ANY OR	re a correct chemical property in (i) adium harder adium higher melting point or boiling point adium higher density 7 TWO corresponding statements for potassium has to be comparison		[2]
		(ii)	pota pota pota vana vana ANY	re a correct physical property in (ii) ssium more reactive or example of different reactivi ssium reacts with cold water, vanadium does not. ssium one oxidation state, vanadium more than one adium coloured compounds, potassium white or colo adium and its compounds catalysts, not potassium ' TWO has to be comment about both elements	Э	[2]
(0	e)	(i)		ine gas tine solid		[1] [1]
		(ii)	both both both both both both both	have valency of one can react with other elements to form halides are oxidants by correct Chemistry – they both form acidic hydride have diatomic molecules accept one electron or form ion X ⁻ have seven valency electrons react with non-metals to form covalent compounds react with metals to form ionic compounds form acidic oxides		
				have a valency of 7 TWO		[2]
						[Total: 15]

Page 4		Mark Scheme	Syllabus	Paper	
	IGCSE – May/June 2007 0620		0620	3	
(a) (i)	 (i) air would react (with the magnesium or titanium) OR argon would not react (with the metals) NOT argon is inert 			[1]	
(ii)	anyı	metal higher than magnesium in reactivity series		[1	
(iii)		water (to dissolve salt) or centrifuge		[1 [1	
(b) (i)	elect	tron loss		[1	
(ii)	hydr	ogen		[1	
(iii)	oxyg chlor			[1 [1	
(iv)		nnot lose electrons (because) ceives electrons (from the battery)		[1 [1	
		reduction occurs at the cathode ation at the anode (not cathode)		[1 [1	
		electrons are "pushed" to rig enting it from being oxidised		[1 [1	
	for c	omments of the type – rusting needs oxygen, it is	formed on titanium	not iron ONLY [1	
	NOT	the idea that titanium is more reactive etc		-	
(v)	does cathe	1 ificial protection is a cell ont need electricity odic protection is electrolysis odic protection needs electricity			
	this r catho	2 ificial protection needs a more reactive metal (in cometal corrodes instead of steel odic protection needs an inert electrode accept un lectrode			
	has t	to be ONE comment from each set comments about oxide layers and coating are neutr	al	[2	

[Total: 12]

·	Page 5			Mark Scheme S	yllabus	Paper
				IGCSE – May/June 2007	0620	3
6 ((a)	sod iron	lium a I(III) d	or aluminium oxide luminate oxide or centrifuge NOT conditional		[1] [1] [1] [1]
((b)	<u>carl</u> 900	<u>bon</u> c) to 1(miniui	to right: athode or <u>carbon</u> negative electrode)00°C n		[1] [1] [1] [1]
((c)	(i)	not b	+ 3e = A <i>l</i> palanced [1] aq) = 0		[2]
		(ii)		en is formed NOT oxide ts with carbon anode		[1] [1]
((d)	(i)	acce	density or light or resistant to corrosion pt strength/weight ratio or alloys are strong ng on its own is neutral		[1]
		(ii)	oxid easi	attacked or corroded or unreactive e layer y shaped or malleable or ductile TWO		[2]
	((iii)	for s	trength or so it does not break or does not sag or can h	ave pylons	
				steel is a better conductor aluminium protects steel from rusting		[1]

[Total: 16]

Page 6		;	Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2007	0620	3	
(a)	butanol no number needed but if one is given it has to be 1					
			l formula (all bonds shown) OH NOT –HO		[
	stru acc no	ept –0 conse	acid I formula (all bonds shown) OH NOT –HO eq marking ds are not shown (CH ₃ –CH ₂ –), penalise once		[[
(b)	(i)		t have correct ester linkage ID continuation and a group on either side of the	ester group	[[
		Acce	ept –COO–			
	(ii)		ept any sensible suggestion s, clothing, bottles, packaging, bags		I	
(c)	(i)	8			I	
	(ii)	CON C ₂ H ₄	ble bond becomes single and 4 bonds per carbor ID a bromine atom on each carbon 4Br ₂ ONLY [1] apt a structural formula with hydrogen atoms	n atom		
	(iii)	corn	oil			
(d)	884	•	at react with 86.2g of iodine at react with 762 g of iodine $x 2$		I	
			e of fat reacts with 762/254 moles of iodine molec e of fat reacts with 3 moles of iodine molecules	cules		
	limi	t 6	of double bonds in one molecule of fat is 3 Iential marking allowed provided the number of a	double bonds is an int	eger.	

[Total: 14]